
Open substrates for transparent, accessible programming

Tomas Petricek

Charles University, Prague

tomas@tomasp.net

1. Why substrates

I believe that the most important computer science research

is not one that answers hard questions, but one that provi-

des a new perspective that lets us ask new more revealing

questions. The idea of a programming substrate has the

potential to do this for programming.

For a long time, programming has been conceptualized as

the act of writing code. This view comes with a number of

assumptions. Code is written, compiled into an executable

and then used by a user who is distinct from the program-

mer writing the code. Thinking about programming as

interacting with (or operating within) a substrate makes it

possible to rethink basic assumptions about programming.

Eliminate user vs. programmer divide. If we think of

both programming and using as interaction with a substra-

te, the strict distinction between a user and a programmer

disappears. This is a step towards making programming

more accessible and giving users the freedom to use and

modify their programs as they wish.

Making programs transparent. If programs exist as

structures constructed within a programmable substrate

that the user can also manipulate, the user can also look

inside the programs they use – in order to understand how

programs work, to learn and to modify them.

Focus on interaction. Thinking of programming as inter-

acting with a substrate shifts attention from textual code to

other forms of interaction. This makes it possible to think

of new, more interactive ways of programming, advancing

ideas such as programming by demonstration [3].

Bringing human to focus. When we think of program-

ming as interacting with a substrate, we also need to think

about who interacts with the substrate and how. In other

words, the view brings the human into the focus, in a

fruitful way [6] that the focus on static code does not.

Reconnect with our glorious past. Many bold visions of

computing and programming of the past have been lost as

the result of the shift to thinking about programming

languages [2]. By focusing on programming substrates, we

are able to continue – and advance this pioneering work.

2. Research vision

I believe that software should be more transparent and

more accessible. When using a program, users should be

able to understand why they are seeing the results that they

are seeing. They should be able to ask questions about their

outputs and, potentially, modify the software they work

with to better suit their needs. The complexity of making a

change should be proportional to the scale of the change,

i.e., an easy change should be easy to make, but a complex

change of behavior may require greater effort. I believe that

this can only be achieved if we think about the software

substrate on top of which programs are constructed.

However, this kind of research vision requires not just new

technical development, but also (a) new research methods

that make it possible to study aspects of a system that are

hard to formalize using adequately simplified models and

(b) better understanding of the past, which reveals why the

many past efforts to make programming more accessible

and transparent have failed.

Figure 1. Substrates in current software systems [7]. Most applica-

tions today, such as a hypothetical accounting system, offer one substrate

for development (code) and one for the user (user interface). Spread-

sheets provide multiple substrates with different capabilities (macros

provide more capabilities than equations), but the substrates are strictly

separate making it difficult to gradually progress.

Figure 2. Ideal hypothetical substrate [7]. An ideal hypothetical

substrate would provide one uniform way of interaction. This would be

easy to use when merely using existing systems, but it would make it

possible to make larger changes – modify the system itself – through the

same substrate, with difficulty proportional to the scope of the change.

mailto:tomas@tomasp.net

2. What is a substrate

In the text above, I used the term substrate without defining

it. The examples suggest what I mean by the idea, but fin-

ding a precise definition should be one of the tasks for the

emerging research field. Tentatively, I understand substrate

as a mechanism that can be used for structuring informa-

tion and computation. A substrate integrates the capability

to represent data and logic with the capability of perfor-

ming computations.

Arguably, this definition is very permissive. A spreadsheet

document (with data tables, formulas and live evaluation)

is a substrate. UNIX (with files, executables and process

invocation) is a substrate. But also, many not yet invented

systems can be thought of as substrates. For example, my

recent work has been focused on computational documents

(structured documents that combine data and formulas with

an evaluation mechanism).

The idea of a substrate is very closely related to two other

existing notions. The first is personal dynamic media intro-

duced by Kay and Goldberg [5]. Personal dynamic media

was envisioned as system for managing user’s all informa-

tion related needs. This is very similar to my understanding

of computational substrates, with the difference that com-

putational substrates do not have to be personal – an alter-

native explored by Webstrates [8]. The second is the notion

of interactive, stateful programming systems [1, 2], which

also makes it possible to see programming as interaction,

rather than as writing of code.

The notion of a computational substrate may let us revisit

those past ideas, look at them from a modern perspective

and combine them with other novel research directions.

3. Research methods

Perhaps the most valuable aspect of focusing our research

efforts around substrates is that it shifts attention – from

formal reasoning about code and tools for manipulating

code to interaction between the human and the system and

capabilities that a programmable system can offer.

However, decades of research on programming that have

been focused on code mean that our methods for studying

code are significantly more advanced than our methods for

studying substrates and interaction. We thus need to com-

plement our research methods with new ones. In this

section, I suggest three directions worth exploring.

3.1 Making demos rigorous

Software demos have long been used in the context of live

and interactive programming to showcase the capabilities

of new research systems. Demos make it possible to show

interactive capabilities that are difficult to understand from

a textual description. However, demos lack the rigor of

mature computer science.

To study substrates, we need to find a way of turning demos

from a presentation device into a rigorous epistemic object.

To do this, we may take inspiration from the close reading

method of critical code studies [10] where a specific aspect

of a system is studied in detail from multiple perspectives,

as well as from interactive web-based essays that allow the

reader to experience particular interaction, albeit in a limi-

ted context. The key issue is establishing norms for what

aspects of the system need to be explored in depth and what

aspects can be ignored as unnecessary technical detail.

3.2 Complementary science

There are multiple past programming systems that are built

around interestingly structured substrates. One example is

the Boxer system [12] that is built around documents that

contain data and computations and follow the design prin-

ciple of naïve realism (what you see is all there is). An

important part of our research on substrates should be

recovering those innovative ideas, many of which have

been lost or forgotten (or became difficult to understand)

due to the paradigm shift from programming systems to

programming languages [2].

The notion of complementary science, proposed by the

historian Hasok Chang [11] provides a potential direction.

It proposes to study history of science, looking at not just

the winning but also the losing side of the history and use

the recovered knowledge to critically asses contemporary

scientific knowledge, further develop forgotten ideas and

see if they can offer new perspectives today.

3.3 History of science

Finally, the study of substrates should not be merely

technical. For example, the idea of making programming

more open has been proposed repeatedly in the past. The

Smalltalk vision was of an open system [5], yet the object-

oriented programming paradigm that we today remember

from Smalltalk does not specifically support openness (you

cannot open an object browser and modify your application

written in Java or C#).

Similarly, the vision of free software [4] advocated for

users to be able to understand and modify their programs.

In modern open-source software, this is the reality hypo-

thetically at best – because of the increasing software com-

plexity, most users (including programmers) are practically

unable to modify their programs. In both cases, the original

vision dissolved for a mix of (perhaps inevitable) social

and technical (or engineering) reasons. If we want to design

substrates that will offer new capabilities to users, we need

to understand the mechanisms through which the desirable

capabilities of past systems got lost – both for the sake of

understanding history and for the sake of preventing such

loss from our future substrates.

4. Conclusions

The notion of a substrate lets us talk about programming in

a way that shifts focus from questions focused on formal

properties of programming languages to interaction with a

system and capabilities provided to the user. This is more

human-centric perspective that, arguably, focuses on what

actually matters about programming. The idea is not new

and has predecessors in work on computational media and

programming systems, but reinventing those in the modern

research context in the form of computational substrates

gives us an opportunity to explore fresh ideas and research

directions on programming. An essential part of this new

direction will be new research methodologies – we need

methods that let us understand interaction with substrates,

but also methods that let us understand capabilities of past

systems and methods that let us understand how appealing

ideas on programming fail.

Acknowledgements. The ideas in this vision statements

are heavily influenced by numerous discussions with Joel

Jakubovic and Jonathan Edwards and draw from previous

work with Stephen Kell and Luke Church.

References

[1] Jakubovic, J., Edwards, J., & Petricek, T. (2023). Technical

Dimensions of Programming Systems. The Art, Science, and

Engineering of Programming, 7(3), 13-1.

[2] Gabriel, R. P. (2012, October). The structure of a

programming language revolution. In Proceedings of the ACM

international symposium on New ideas, new paradigms, and

reflections on programming and software (pp. 195-214).

[3] Cypher, A., & Halbert, D. C. (Eds.). (1993). Watch what I

do: programming by demonstration. MIT Press.

[4] Stallman, R. (1984). The free software definition. GNU's

Bulletin, Vol. 1, no. 1: https://www.gnu.org/bulletins/bull1.txt

[5] Kay, A., & Goldberg, A. (1977). Personal dynamic media.

Computer, 10(3), 31-41.

[6] Chasins, S. E., Glassman, E. L., & Sunshine, J. (2021).

PL and HCI: better together. Communications of the ACM,

64(8), 98-106.

[7] Jakubovic, J., & Petricek, T. (2025) On the Limits of Making

Programming Easy. To appear.

[8] Klokmose, C. N., Eagan, J. R., Baader, S., Mackay, W., &

Beaudouin-Lafon, M. (2015, November). Webstrates: shareable

dynamic media. In Proceedings of the 28th Annual ACM

Symposium on User Interface Software & Technology.

[9] Edwards, J., Kell, S., Petricek, T., & Church, L. (2019).

Evaluating programming systems design. In PPIG 2019.

[10] Marino, M. C. (2020). Critical code studies. MIT Press.

[11] Chang, H. (2004). Inventing temperature: Measurement and

scientific progress. Oxford University Press.

[12] diSessa, A. A., & Abelson, H. (1986). Boxer: A

reconstructible computational medium. Communications of the

ACM, 29(9), 859-868.

[13] Petricek, T. & Jakubovic, J. (2021). Complementary

science of interactive programming. Presented at HaPoC.

Available at: https://tomasp.net/academic/drafts/complementary/

https://tomasp.net/academic/drafts/complementary/

*********************** PAPER 7 ***********************
AUTHORS: Tomas Petricek
TITLE: Open substrates for transparent, accessible programming

++++++++++ REVIEW 1 (Gilad Bracha) +++++++++
I really like the discussion of motivation. I think we need a more concrete notion of substrate than "a platform".
Clemens suggests live documents; Jonathan gives specific technical criteria. I think this can be generalized a bit,
into 3D spaces.

By rigorous demos, do we mean "reproducible artifacts"?

It is obviously good to learn form history, but I am more interested in actually building substrates and trying them
out; so all this feels a bit too abstract for me.

You managed to get thru the whole piece without mentioning AI. I think it cannot be ignored.

++++++++++ REVIEW 3 (Jonathan Edwards) +++++++++
Starts with a nice clear list of motivations for substrates:

1. Eliminate user vs. programmer divide.
2. Making programs transparent.
3. Focus on interaction.
4. Bringing [the] human [in]to focus.
5. Reconnect with our glorious past.

I really appreciated the discussion of research methods. We need to discuss this crucial issue at the workshop.
Tomas makes 3 suggestions to start that conversation:

1. Make demos rigorous: "To study substrates, we need to find a way of turning demos from a presentation device
into a rigorous epistemic object." Great idea! Tomas suggests the "close reading" method of literary analysis which
has been adopted by Critical Code Studies. I must confess that these practices in the humanities tend to trigger my
BS detector. I worry that Reviewer 2 is equally unenlightened. We should discuss this at the workshop. Could we
adapt HCI methodologies for evaluating UIs? Could we make our demos more evaluable by borrowing techniques
from "user onboarding" and in-game tutorials?

2. Complementary Science: "looking at not just the winning but also the losing side of the history and use the
recovered knowledge to critically asses[s] contemporary scientific knowledge, further develop forgotten ideas and
see if they can offer new perspectives today."

3. History of Science: "If we want to design substrates that will offer new capabilities to users, we need to
understand the mechanisms through which the desirable capabilities of past systems got lost". Hear hear! To have
an effective conversation we need a Theory of Mind -- to do impactful research we need a Theory of Adoption for
both academia and industry.

++++++++++ REVIEW 4 (Tom Larkworthy) +++++++++
The author provides very clear definitions of how they would like a substrate to behave, many of which align with an
underlying goal of making programming more accessible. It might be worth expanding on why that is a desirable
goal, because that might inform future work on how to measure success better, which is unclear at present. For

example, do we expect future substrates to enable laypeople to automate ad hoc daily tasks? What do those tasks
look like? Does the substrate provide the target audience the expected utility? Is the substrate the problem or
perhaps creativity or motivation is? etc.
The open questions highlighted in the paper provide good starting points for lively discussion at the workshop. A
convincing argument is provided that new research methodologies will be needed to reframe programming research
from technical expressivity to measurement of humaneness. Exactly how we could scale this effectively with a
reusable benchmark would be a huge boost a future research specialization.
Overall the paper is an earnest step towards describing key research blockers for creating a substrate research
direction. However, there is a danger of group think and so it's also worth spending time explaining WHY, to what
end? The answer to that question will be critical on direction setting.

++++++++++ REVIEW 5 (Camille Gobert) +++++++++
This statement proposes a permissive definition of substrates and insists on the importance of finding ways to shift
established perspectives in order to advance research on this topic. Tomas argue that this might equally mean
looking at the past again by, e.g., revisiting old ideas and extinguished systems that may have had interesting
properties, as well as by looking at the future differently by, e.g., investing more in demos.

I totally connect with the idea of learning by gaining a "better understanding of the past". I'm actually curious why
this is not something that we already do? Do we lack incentives such as specific funding programs or recognised
academic value, and if so, would pushing for these help conduct better research on substrates? For example, could
we make room for academic contributions that find, contextualise, critique, reimplement and/or revisit old ideas and
systems, either at <Programming> or elsewhere?

I would also like to further discuss the methods we could use to analyse "failures" from the past: for example, how
can we distinguish substrates that could not be engineered well-enough back then but could be today from those
that have more "essential" limitations? This also echoes points that Tomas mentions in §3.3: object-oriented
systems have indeed become vastly different (and vastly less malleable) than they were in Smalltalk one or two
decades before something like Java. Why is that?

Finally, I really like the comparison between a spreadsheet and an accounting system (Figure 1). I think this is an
excellent example, perhaps one that could be a canonical example of a type of application/work that can benefit
from more diverse substrates (cf. one of the challenges listed by Jonathan Edwards in their statement). It makes we
wonder how these different substrates share and operate on the same data in different ways: I feel like this is only
possible because they were all engineered and packages together by the same (big) company. How can we
achieve this if each substrate is conceived independently from the other substrates?

++++++++++ REVIEW 6 (Yann Trividic) +++++++++
The vision paper first explains why there is a need for substrates, then proposes a definition for the latter, and finally
submits three methodological axes to help develop the concept: demos, complementary science, and history of
science.

The first axis is the one that echoed most with me. I want to reflect on the methods that help bridge the gap
between a new practice and its targeted audience. What are the methods to apply to understand what breadcrumbs
we need to leave behind in a demo, in a documentation? Those are definitely questions I ask myself a lot: how to
foster adoption, how to bridge the gap between technical abstraction and people who would be so delighted to know
about the potential of some of the tools that are out there, and that have existed for decades.

Regarding the author's point about OOP, I think that what it is pointing regarding the non openness of the object
state is the reason why I personally naturally lean towards imperative programming when facing a problem.

Systematically having an object browser at hand in contemporary systems would be so handy for development and
debugging, among others.

Finally, I do believe that free software has a role to play in the common vision we are defending, and I would love to
see this question, and the author's doubts, be addressed in this session.

Looking forward to discussing more!

