Open substrates for transparent, accessible programming

Tomas Petricek
Charles University, Prague
tomas(@tomasp.net

1. Why substrates

I believe that the most important computer science research
is not one that answers hard questions, but one that provi-
des a new perspective that lets us ask new more revealing
questions. The idea of a programming substrate has the
potential to do this for programming.

For a long time, programming has been conceptualized as
the act of writing code. This view comes with a number of
assumptions. Code is written, compiled into an executable
and then used by a user who is distinct from the program-
mer writing the code. Thinking about programming as
interacting with (or operating within) a substrate makes it
possible to rethink basic assumptions about programming.

Eliminate user vs. programmer divide. If we think of
both programming and using as interaction with a substra-
te, the strict distinction between a user and a programmer
disappears. This is a step towards making programming
more accessible and giving users the freedom to use and
modify their programs as they wish.

Making programs transparent. If programs exist as
structures constructed within a programmable substrate
that the user can also manipulate, the user can also look
inside the programs they use — in order to understand how
programs work, to learn and to modify them.

Focus on interaction. Thinking of programming as inter-
acting with a substrate shifts attention from textual code to
other forms of interaction. This makes it possible to think
of new, more interactive ways of programming, advancing
ideas such as programming by demonstration [3].

Bringing human to focus. When we think of program-
ming as interacting with a substrate, we also need to think
about who interacts with the substrate and how. In other
words, the view brings the human into the focus, in a
fruitful way [6] that the focus on static code does not.

Reconnect with our glorious past. Many bold visions of
computing and programming of the past have been lost as
the result of the shift to thinking about programming
languages [2]. By focusing on programming substrates, we
are able to continue — and advance this pioneering work.

2. Research vision

I believe that software should be more transparent and
more accessible. When using a program, users should be
able to understand why they are seeing the results that they
are seeing. They should be able to ask questions about their

hard development
=
2
=
°= % VBA macros
a
equations
SPREADSHEET/EXCEL
EREEREE tables
simple
minimal SCOPE OF CHANGE large

Figure 1. Substrates in current software systems [7]. Most applica-
tions today, such as a hypothetical accounting system, offer one substrate
for development (code) and one for the user (user interface). Spread-
sheets provide multiple substrates with different capabilities (macros
provide more capabilities than equations), but the substrates are strictly
separate making it difficult to gradually progress.

hard

DIFFICULTY

simple

minimal SCOPE OF CHANGE large

Figure 2. Ideal hypothetical substrate [7]. An ideal hypothetical
substrate would provide one uniform way of interaction. This would be
easy to use when merely using existing systems, but it would make it
possible to make larger changes — modify the system itself — through the
same substrate, with difficulty proportional to the scope of the change.

outputs and, potentially, modify the software they work
with to better suit their needs. The complexity of making a
change should be proportional to the scale of the change,
i.e., an easy change should be easy to make, but a complex
change of behavior may require greater effort. I believe that
this can only be achieved if we think about the software
substrate on top of which programs are constructed.

However, this kind of research vision requires not just new
technical development, but also (a) new research methods
that make it possible to study aspects of a system that are
hard to formalize using adequately simplified models and
(b) better understanding of the past, which reveals why the
many past efforts to make programming more accessible
and transparent have failed.

mailto:tomas@tomasp.net

2. What is a substrate

In the text above, I used the term substrate without defining
it. The examples suggest what I mean by the idea, but fin-
ding a precise definition should be one of the tasks for the
emerging research field. Tentatively, [understand substrate
as a mechanism that can be used for structuring informa-
tion and computation. A substrate integrates the capability
to represent data and logic with the capability of perfor-
ming computations.

Arguably, this definition is very permissive. A spreadsheet
document (with data tables, formulas and live evaluation)
is a substrate. UNIX (with files, executables and process
invocation) is a substrate. But also, many not yet invented
systems can be thought of as substrates. For example, my
recent work has been focused on computational documents
(structured documents that combine data and formulas with
an evaluation mechanism).

The idea of a substrate is very closely related to two other
existing notions. The first is personal dynamic media intro-
duced by Kay and Goldberg [5]. Personal dynamic media
was envisioned as system for managing user’s all informa-
tion related needs. This is very similar to my understanding
of computational substrates, with the difference that com-
putational substrates do not have to be personal — an alter-
native explored by Webstrates [8]. The second is the notion
of interactive, stateful programming systems [1, 2], which
also makes it possible to see programming as interaction,
rather than as writing of code.

The notion of a computational substrate may let us revisit
those past ideas, look at them from a modern perspective
and combine them with other novel research directions.

3. Research methods

Perhaps the most valuable aspect of focusing our research
efforts around substrates is that it shifts attention — from
formal reasoning about code and tools for manipulating
code to interaction between the human and the system and
capabilities that a programmable system can offer.

However, decades of research on programming that have
been focused on code mean that our methods for studying
code are significantly more advanced than our methods for
studying substrates and interaction. We thus need to com-
plement our research methods with new ones. In this
section, I suggest three directions worth exploring.

3.1 Making demos rigorous

Software demos have long been used in the context of live
and interactive programming to showcase the capabilities
of new research systems. Demos make it possible to show
interactive capabilities that are difficult to understand from
a textual description. However, demos lack the rigor of
mature computer science.

To study substrates, we need to find a way of turning demos
from a presentation device into a rigorous epistemic object.
To do this, we may take inspiration from the close reading
method of critical code studies [10] where a specific aspect
of a system is studied in detail from multiple perspectives,
as well as from interactive web-based essays that allow the
reader to experience particular interaction, albeit in a limi-
ted context. The key issue is establishing norms for what
aspects of the system need to be explored in depth and what
aspects can be ignored as unnecessary technical detail.

3.2 Complementary science

There are multiple past programming systems that are built
around interestingly structured substrates. One example is
the Boxer system [12] that is built around documents that
contain data and computations and follow the design prin-
ciple of naive realism (what you see is all there is). An
important part of our research on substrates should be
recovering those innovative ideas, many of which have
been lost or forgotten (or became difficult to understand)
due to the paradigm shift from programming systems to
programming languages [2].

The notion of complementary science, proposed by the
historian Hasok Chang [11] provides a potential direction.
It proposes to study history of science, looking at not just
the winning but also the losing side of the history and use
the recovered knowledge to critically asses contemporary
scientific knowledge, further develop forgotten ideas and
see if they can offer new perspectives today.

3.3 History of science

Finally, the study of substrates should not be merely
technical. For example, the idea of making programming
more open has been proposed repeatedly in the past. The
Smalltalk vision was of an open system [5], yet the object-
oriented programming paradigm that we today remember
from Smalltalk does not specifically support openness (you
cannot open an object browser and modify your application
written in Java or C#).

Similarly, the vision of free software [4] advocated for
users to be able to understand and modify their programs.
In modern open-source software, this is the reality hypo-
thetically at best — because of the increasing software com-
plexity, most users (including programmers) are practically
unable to modify their programs. In both cases, the original
vision dissolved for a mix of (perhaps inevitable) social
and technical (or engineering) reasons. If we want to design
substrates that will offer new capabilities to users, we need
to understand the mechanisms through which the desirable
capabilities of past systems got lost — both for the sake of
understanding history and for the sake of preventing such
loss from our future substrates.

4. Conclusions

The notion of a substrate lets us talk about programming in
a way that shifts focus from questions focused on formal
properties of programming languages to interaction with a
system and capabilities provided to the user. This is more
human-centric perspective that, arguably, focuses on what
actually matters about programming. The idea is not new
and has predecessors in work on computational media and
programming systems, but reinventing those in the modern
research context in the form of computational substrates
gives us an opportunity to explore fresh ideas and research
directions on programming. An essential part of this new
direction will be new research methodologies — we need
methods that let us understand interaction with substrates,
but also methods that let us understand capabilities of past
systems and methods that let us understand how appealing
ideas on programming fail.

Acknowledgements. The ideas in this vision statements
are heavily influenced by numerous discussions with Joel
Jakubovic and Jonathan Edwards and draw from previous
work with Stephen Kell and Luke Church.

References

[1] Jakubovic, J., Edwards, J., & Petricek, T. (2023). Technical
Dimensions of Programming Systems. The Art, Science, and
Engineering of Programming, 7(3), 13-1.

[2] Gabriel, R. P. (2012, October). The structure of a
programming language revolution. In Proceedings of the ACM
international symposium on New ideas, new paradigms, and
reflections on programming and software (pp. 195-214).

[3] Cypher, A., & Halbert, D. C. (Eds.). (1993). Watch what I
do: programming by demonstration. MIT Press.

[4] Stallman, R. (1984). The free software definition. GNU's
Bulletin, Vol. 1, no. 1: https://www.gnu.org/bulletins/bulll.txt

[5] Kay, A., & Goldberg, A. (1977). Personal dynamic media.
Computer, 10(3), 31-41.

[6] Chasins, S. E., Glassman, E. L., & Sunshine, J. (2021).
PL and HCI: better together. Communications of the ACM,
64(8), 98-106.

[7] Jakubovic, J., & Petricek, T. (2025) On the Limits of Making
Programming Easy. To appear.

[8] Klokmose, C. N., Eagan, J. R., Baader, S., Mackay, W., &
Beaudouin-Lafon, M. (2015, November). Webstrates: shareable
dynamic media. In Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology.

[9] Edwards, J., Kell, S., Petricek, T., & Church, L. (2019).
Evaluating programming systems design. In PPIG 2019.

[10] Marino, M. C. (2020). Critical code studies. MIT Press.

[11] Chang, H. (2004). Inventing temperature: Measurement and
scientific progress. Oxford University Press.

[12] diSessa, A. A., & Abelson, H. (1986). Boxer: A
reconstructible computational medium. Communications of the
ACM, 29(9), 859-868.

[13] Petricek, T. & Jakubovic, J. (2021). Complementary
science of interactive programming. Presented at HaPoC.
Available at: https://tomasp.net/academic/drafts/complementary/

https://tomasp.net/academic/drafts/complementary/

kkkkkkkkkhhkkkkhkkkkkkkkk PAPER 7 kkkkkkkhkhkkkkhkhkkkhkhkkkkkk

AUTHORS: Tomas Petricek
TITLE: Open substrates for transparent, accessible programming

++++++++++ REVIEW 1 (Gilad Bracha) +++++++++

| really like the discussion of motivation. | think we need a more concrete notion of substrate than "a platform".
Clemens suggests live documents; Jonathan gives specific technical criteria. | think this can be generalized a bit,
into 3D spaces.

By rigorous demos, do we mean "reproducible artifacts"?

It is obviously good to learn form history, but | am more interested in actually building substrates and trying them
out; so all this feels a bit too abstract for me.

You managed to get thru the whole piece without mentioning Al. | think it cannot be ignored.

++++++++++ REVIEW 3 (Jonathan Edwards) +++++++++
Starts with a nice clear list of motivations for substrates:

1. Eliminate user vs. programmer divide.
2. Making programs transparent.

3. Focus on interaction.

4. Bringing [the] human [in]to focus.

5. Reconnect with our glorious past.

| really appreciated the discussion of research methods. We need to discuss this crucial issue at the workshop.
Tomas makes 3 suggestions to start that conversation:

1. Make demos rigorous: "To study substrates, we need to find a way of turning demos from a presentation device
into a rigorous epistemic object." Great idea! Tomas suggests the "close reading" method of literary analysis which
has been adopted by Critical Code Studies. | must confess that these practices in the humanities tend to trigger my
BS detector. | worry that Reviewer 2 is equally unenlightened. We should discuss this at the workshop. Could we
adapt HCI methodologies for evaluating Uls? Could we make our demos more evaluable by borrowing techniques
from "user onboarding" and in-game tutorials?

2. Complementary Science: "looking at not just the winning but also the losing side of the history and use the
recovered knowledge to critically asses[s] contemporary scientific knowledge, further develop forgotten ideas and
see if they can offer new perspectives today."

3. History of Science: "If we want to design substrates that will offer new capabilities to users, we need to
understand the mechanisms through which the desirable capabilities of past systems got lost". Hear hear! To have
an effective conversation we need a Theory of Mind -- to do impactful research we need a Theory of Adoption for
both academia and industry.

++++++++++ REVIEW 4 (Tom Larkworthy) +++++++++

The author provides very clear definitions of how they would like a substrate to behave, many of which align with an
underlying goal of making programming more accessible. It might be worth expanding on why that is a desirable
goal, because that might inform future work on how to measure success better, which is unclear at present. For

example, do we expect future substrates to enable laypeople to automate ad hoc daily tasks? What do those tasks
look like? Does the substrate provide the target audience the expected utility? Is the substrate the problem or
perhaps creativity or motivation is? etc.

The open questions highlighted in the paper provide good starting points for lively discussion at the workshop. A
convincing argument is provided that new research methodologies will be needed to reframe programming research
from technical expressivity to measurement of humaneness. Exactly how we could scale this effectively with a
reusable benchmark would be a huge boost a future research specialization.

Overall the paper is an earnest step towards describing key research blockers for creating a substrate research
direction. However, there is a danger of group think and so it's also worth spending time explaining WHY, to what
end? The answer to that question will be critical on direction setting.

++++++++++ REVIEW 5 (Camille Gobert) +++++++++

This statement proposes a permissive definition of substrates and insists on the importance of finding ways to shift
established perspectives in order to advance research on this topic. Tomas argue that this might equally mean
looking at the past again by, e.g., revisiting old ideas and extinguished systems that may have had interesting
properties, as well as by looking at the future differently by, e.g., investing more in demos.

| totally connect with the idea of learning by gaining a "better understanding of the past". I'm actually curious why
this is not something that we already do? Do we lack incentives such as specific funding programs or recognised
academic value, and if so, would pushing for these help conduct better research on substrates? For example, could
we make room for academic contributions that find, contextualise, critique, reimplement and/or revisit old ideas and
systems, either at <Programming> or elsewhere?

I would also like to further discuss the methods we could use to analyse "failures" from the past: for example, how
can we distinguish substrates that could not be engineered well-enough back then but could be today from those
that have more "essential" limitations? This also echoes points that Tomas mentions in §3.3: object-oriented
systems have indeed become vastly different (and vastly less malleable) than they were in Smalltalk one or two
decades before something like Java. Why is that?

Finally, | really like the comparison between a spreadsheet and an accounting system (Figure 1). | think this is an
excellent example, perhaps one that could be a canonical example of a type of application/work that can benefit
from more diverse substrates (cf. one of the challenges listed by Jonathan Edwards in their statement). It makes we
wonder how these different substrates share and operate on the same data in different ways: | feel like this is only
possible because they were all engineered and packages together by the same (big) company. How can we
achieve this if each substrate is conceived independently from the other substrates?

++++++++++ REVIEW 6 (Yann Trividic) +++++++++

The vision paper first explains why there is a need for substrates, then proposes a definition for the latter, and finally
submits three methodological axes to help develop the concept: demos, complementary science, and history of
science.

The first axis is the one that echoed most with me. | want to reflect on the methods that help bridge the gap
between a new practice and its targeted audience. What are the methods to apply to understand what breadcrumbs
we need to leave behind in a demo, in a documentation? Those are definitely questions | ask myself a lot: how to
foster adoption, how to bridge the gap between technical abstraction and people who would be so delighted to know
about the potential of some of the tools that are out there, and that have existed for decades.

Regarding the author's point about OOP, | think that what it is pointing regarding the non openness of the object
state is the reason why | personally naturally lean towards imperative programming when facing a problem.

Systematically having an object browser at hand in contemporary systems would be so handy for development and
debugging, among others.

Finally, | do believe that free software has a role to play in the common vision we are defending, and | would love to
see this question, and the author's doubts, be addressed in this session.

Looking forward to discussing more!

